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The motivative question is why Earth can stay on its orbit 
despite of a perturbation caused by Jupiter. We see 
everyday that situations get quickly out of control due to 
a tiny error. Indeed, it seems very easy to disturb and 
destroy certain systems, just by disturbing them. Even 
with a simple system, for example, if you quickly vibrate 
an oscillating pendulum, or if you try to bounce a pin 
pong ball on a racket[5], a system will start exhibiting a 
variety of chaotic outputs (e.g. frequency of a pendulum, 
height of a pin pong ball),  even though the input is a tiny 
force. Naturally, one might say, “everything which is not 
forbidden is allowed,” and we are led to suppose that any 
system with some perturbation will eventually realize all 
the possible behaviors it could realize after sufficiently 
long time (Ergodic Hypothesis). Nevertheless, we see 
many systems that are not chaotic, and even with a 
perturbation, do not experience every configuration that 
is classically possible. Here, we shall examine a 
condition in which a dynamical system can be stable and 
periodic using MATLAB. 

Qualitatively, you can see that the direction of gravitational 
force acting on Earth is being averaged out.
Now, let’s try to examine more general dynamical systems.
Consider the Hénon-Heiles Hamiltonian that describes the 
motion of stars around a galactic center, assuming the 
motion is restricted to the xy plane;
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nonlinear perturbation term. It can be shown that in action-
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We shall examine Poincare sections in the 𝑝$−𝑦 plane, so 
we set x=0 and find the initial energy, 𝐸 = !
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When the energy 𝐸 = !
!"
,

There exist multiples of tori, which 
indicates that stability and periodicity
of motion.
,

As you increase the 
Energy, the tori 
have been destroyed.
At 𝐸 !

'
, phase space is 

filled with chaos.

Remarkably, we can conjure up a usual map, standard map (or twist 
map). In figure in the right, since the radius of the torus is constant,
𝑟!"# = 𝑟! . And, since θ (= 𝜔# . 𝑡 + 𝛿)
shifts by 𝜔# . 𝑇 where 𝑇 = $%

&!
,

𝜃!"# = 𝜃! + 2𝜋
&"
&!

. And this defines the map.
If we now perturb 𝐻', assuming that
the	perturbation	is	periodic	and	
since &"

&!
is only depends on 𝑟,with a scaling, we have,

𝑟!"# = 𝑟! . + 𝜀 . 𝑠𝑖𝑛 𝜃!
𝜃!"# = 𝜃! + 𝑟! (mod 2𝜋)

This map works in general, 
such as Hénon-Heiles system
as well as Three-body problem.
applying this map.

In addition to the fact that the tori 
break down as the perturbation
increases, we can see the stability 
of tori as a function of the ratio 
of two frequencies.
Also, you can see that the map is
filled with elliptic curves
and hyperbolic curves.
Since this process repeats
and makes smaller curves 
each time tori breaks down.
You can see a fractal structure. 

Suppose we have a Hamiltonian,
ℋ(p,q)

Now, consider a generator 𝐹 for a canonical transformation 
such that
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In the same sprit, consider a canonical transformation 
𝑆 𝑞, 𝐽 such that
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where 𝑆(𝑞, 𝐽) is a solution of 

Hamilton-Jacobi equation ℋ[𝑞⃑, (, .,1⃑
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𝑆(𝑞, 𝐽) is the generator of canonical transformation. 
Now, we consider a poison bracket 𝐼3 , 𝐼4 where  i ≠ 𝑗.
Here, Hamiltonian H is conserved, and since  56
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is an evolution equation, 𝐼3 , 𝐼4 =0 implies that 
𝐼3 , 𝐼4…form planes (in two dimension) that foliate in a phase 
space. If there are n such 𝐼3 exist for Hamiltonian ℋ with n 
degrees of freedom, such a system is called integrable.

Consider	a	perturbation	𝐻!, thus, the new Hamiltonian is,
𝐻 = 𝐻&(𝐽) + 𝜀𝐻!(𝐽, 𝜃)

where 𝜀 is a small dimensionless parameter.
Can we make a canonical transformation that the resulting 
𝐻 only depends on 𝐽. We search for a generating function 
𝑆 which satisfies Hamilton Jacobi equation 𝐻 (,
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𝐽 + 𝜀𝑆!(𝐽, 𝜃⃑) where 𝜃⃑ 1 𝐽 is the identity transformation, we 
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= −𝐻!(𝐽, 𝜃⃑). By letting 𝐻! 𝐽, 𝜃⃑ =

∑9𝐻9𝑒398 , we get as a solution, 𝑆! = 𝑖 ∑9
:"
9;<"

𝑒398 . Here, 
we see that 𝑆! diverges if 𝑘 1 𝜔9= 0 for some 𝑘 ∈ ℕ. Such 
𝜔9 is called resonant and rational. In fact, if a system is 
resonant, it gets destroyed by the slightest perturbation. It 
can be thought that the perturbation is smoothed out, 
averaged out when the ratio <!

<#
is irrational.

The strength of irrationality here can be defined as how 
large the natural numbers must be to form a fraction that 
approximates the number. e.g. =
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In fact, the most irrational number turns out to be the golden 

ratio: !> ?
"

which is the frequency that is most resistant to 
the perturbation. Earth’s orbit with a smaller and larger 
frequency of “Jupiter” is shown in the next page.

𝐼3 , 𝐼4 =0 → 𝐼3 does not stick out from 
the surface as it is dragged along 𝐼4 .(Lie derivative)

Generally,  we can construct,
̇𝐽 = − (ℋ(1⃑)
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(1⃑
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which gives,
𝐽 =constant, 𝜃⃑ = 𝜔 1 𝑡 + 𝜃⃑&

Then, 𝜃⃑ periodic and will form a n-dimensional tori for 
Hamiltonian with n-degrees of freedom. The motions lie on 
the surfaces of constant 𝐽.

Here, the concept of stability in its generality is examined 
by reviewing an integrability, mainly on the action-angle 
coordinate. Then, a few dynamical systems are examined
We saw that a system, with an appropriate condition, can 
maintain its stability even after some perturbation turns on 
and do not become chaotic immediately.
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